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An optimization method for low-thrust orbit transfers around a central body is
developed using the Q-law and a multi-objective genetic algorithm. In the
hybrid method, the Q-law generates candidate orbit transfers, and the multi-
objective genetic algorithm optimizes the Q-law control parameters in order to
simultaneously minimize both the consumed propellant mass and flight time of
the orbit transfer. Recently, the thrust control condition of the Q-law has been
refined by the introduction of the concept of relative effectivity. The refined
thrust control condition is tested in the hybrid optimization method, and its
contribution to the Q-law performance is analyzed in comparison with the
previous thrust control condition given by absolute effectivity. No significant
performance difference is found between the Q-law with the absolute effectivity
control condition and that with the relative control condition. When the Q-law
parameters are optimized, the previously reported shortcomings of the absolute
and relative effectivity in the nominal Q-law are mitigated through the
optimization process of the other Q-law parameters, which changes the dynamics
of the thrust effectivity.

INTRODUCTION

This paper addresses the problem of finding optimal orbit transfers for low-thrust
spacecraft. A common goal for the optimization problem is to find the minimum-time,
minimum-fuel, or Pareto-optimal trajectory, where the Pareto-optimality means either
minimum time for a given fuel or minimum fuel for a given time. In general, these
optimization problems are difficult to solve due to the long transfer time and multi-
revolutionary transfer.

Various methods have been used to solve this optimization problem. A majority of
the work has utilized either direct or indirect techniques.1 Another quite different
approach is to design heuristic control laws.2,3,4  The advantage of the heuristic control
laws is computational efficiency, while the drawback is that the solutions are non-
optimal. Recently, the drawback was overcome by combining the heuristic control law
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with a global optimizer.5,6 In this hybrid approach, a Lyapunov feedback control law
termed Q-law is served as the heuristic control law,2,3,4 and a multi-objective genetic
algorithm is used as a global optimizer for the parameters of the Q-law.5,6 The synergetic,
multi-objective optimization process produces an extended Pareto front with significantly
less computational effort than conventional single-objective optimization algorithms. The
outcome of the hybrid approach is found to be as optimal as those of the direct/indirect
approaches within a reasonably short computational time.5,6 Moreover, the hybrid
approach generates a wide range of Pareto-optimal solutions in a single optimization run
instead of one optimal solution per run, which is the case for most of direct/indirect
approaches.1

Recently, new Q-law parameters have been introduced to improve the performance
of coplanar, circle-to-circle transfers and some transfers involving changes in the argument
of the periapsis.4 One of the newly introduced parameters in the refined Q-law is the
relative thrust effectivity cutoff. The concept of the relative thrust effectivity is
introduced to refine the thrust on/off condition, which previously is solely given by the
absolute thrust effectivity. It has been demonstrated that the relative effectivity provides
a more sensible thrust on/off condition for a coplanar circle-to-circle transfer than the
absolute effectivity, when the nominal Q-law parameters are used.4 In this paper, we
further investigate the effect of using the relative effectivity for the thrust condition
(instead of the absolute effectivity) when the cutoff parameters are optimized in addition
to all the other Q-law parameters.

Q-LAW THRUST EFFECTIVITY
The Q-law is a Lyapunov feedback control law and determines when and at what

angles to thrust based on a proximity quotient function termed Q and the rate of change of
Q due to the thrust.2,3,4 The function Q judiciously quantifies the proximity of the
osculating orbit to the target orbit. The goal of the Q-law is to drive Q to zero, which is
equivalent to arriving at the target orbit. The Q-law chooses a thrust angle that minimizes
the proximity function Q the most at any given time. The on/off control of the thrust is
based on the rate of change of Q with the optimal thrust angle.  

For the thrust on/off control, two thrust effectivity values are defined: 1) the
absolute effectivity and 2) the relative effectivity. The absolute effectivity is given by the
ratio of the rate of change of Q at the current true anomaly to the best possible rate of
change (i.e. maximum in magnitude) of Q over the current osculating orbit. As suggested
by the name, the relative effectivity is given by the relative performance of the rate of
change of Q at the current true anomaly in comparison with the best and the worst
possible rates of change of Q over the current osculating orbit, where the relative
effectivity of the best rate is one and the relative effectivity of the worst rate is zero.

With the two types of the thrust effectivity, the Q-law determines when to thrust or
coast. The Q-law turns the thrust on if the thrust effectivity is larger than a user-defined
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cutoff value, and otherwise turns the thrust off. In general, a higher cutoff value leads to a
more fuel-efficient and longer flight-time trajectory. The user can choose between the
relative and absolute effectivity to control the thrust on/off condition.  In this paper, we
examine the effect of the choice of the effectivity type on the performance of the Q-law
when the Q-law parameters are optimized.

Q-LAW OPTIMIZATION   ALGORITHM
The Q-law has about 15 free control parameters that mission designers can adjust to

obtain different trajectories for a given transfer problem. Some of the parameters, such as
the absolute and relative effectivity cutoff values, affect the thrust on/off condition. Other
parameters define the topology (gradient, maxima, minima, saddle points, etc) of the
proximity quotient function Q. Different effectivity cutoff values lead to different lengths
or locations of the thrust arcs, and different geometries of Q lead to different thrust angles
or shift the locations of thrust arcs. Hence, the mission designer can acquire a different
trajectory for a different set of the Q-law control parameters.  The desired outcome for
the mission designer is the knowledge of the trade-off between optimal flight time and
propellant mass, and the Pareto-optimal trajectory corresponding to each point on the
trade-off curve. Therefore, the goal of our optimization process is to minimize the
competing objectives of required flight time and propellant mass by optimizing the Q-law
control parameters.

Multi-objective Genetic Algorithm

Our optimization follows a standard genetic-algorithm process,7,8 with the exception
that special care is taken for the multi-objective aspect of the orbit transfer.9.10,11 The Q-
law parameters are represented as a real-coded gene. The initial population of the Q-law
parameter sets is prepared randomly with a uniform distribution within a reasonable range
for each Q-law parameter. Each Q-law set generates a candidate Pareto-optimal orbit
transfer. The candidate transfers are evaluated using nondominated sorting,11 where both
consumed propellant mass and flight time are evaluated according to the Pareto-
dominance concept. Parents are selected by binary tournament in order to avoid a
premature loss of diversity in the population. Offspring are generated with biologically
inspired operators – simulated binary crossover and polynomial mutation.11 The new
generation undergoes the same evolution procedure, and this process is iterated until a
termination condition is met.

Optimization Experiments

Three different optimization experiments are performed in order to assess the
contribution of the relative effectivity cutoff parameter ηrel

cut in comparison with the
absolute effectivity cutoff parameter ηabs

cut. First, both ηabs
cut and ηrel

cut are optimized,
meaning that both absolute and relative effectivity are monitored to determine the thrust
on/off condition. Second, only ηabs

cut is optimized while ηrel
cut is set to zero (i.e. the
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relative effectivity becomes irrelevant to the thrust on/off condition). Third, as opposed
to the second experiment only ηrel

cut is optimized while ηabs
cut is set to zero (i.e. the

absolute effectivity becomes irrelevant to the thrust on/off condition). Note that all other
relevant Q-law parameters {Wa, We, Wi, Wω, WΩ, m, n, r, ηφcut, φmin, b, WP, k, rpmin} are
always optimized in all three optimization experiments. From here on, the three
experiments are referred to as EXP-I, EXP-II, and EXP-III, respectively. Table 1
summarizes the setups of the optimization experiments.

Table 1. Effectivity used for thrust/coast condition in three optimization experiments.
Experiment Effectivity used for thrust/coast condition

EXP-I Absolute and Relative
EXP-II Absolute only
EXP-III Relative only

ORBIT   TRANSFER   PROBLEMS

Table 2. Initial and final orbit elements of the orbit transfers studied in this paper.

Case Orbit
a

(km)
e i

(degree)

ω
(degree)

Ω
(degree)

Initial 7000 0.01 0.05 0.0 0.0
A

Target 42000 0.01 Free Free Free
Initial 24505.9 0.725 7.05 0.0 0.0

B
Target 42165.0 0.001 0.05 Free Free
Initial 9222.7 0.2 0.573 0.0 0.0

C
Target 30000.0 0.7 Free Free Free
Initial 944.64 0.015 90.06 156.9 -24.60

D
Target 401.72 0.012 90.01 Free -40.73
Initial 24505.9 0.725 0.06 180.0 180.0

E
Target 26500.0 0.700 116.00 270.0 180.0

The Q-law optimization processes are applied to five types of orbit transfers, which
are different in terms of degree of complexity and number of orbit elements that change.
The five example transfers were first introduced in ref. 2. Table 2 and 3 list the initial and
final orbit elements, thrust characteristics, spacecraft initial mass, and central bodies
associated with the five orbit transfers termed Case A, B, C, D, and E. The orbit transfers
range from the simpler, where a few elements have target values, to the more complex,
where not only all elements have target values, but also where temporary, large sacrificial
changes must be made in some elements in order to change other elements more
effectively, before all elements converge on their target values.
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Table 3. Thrust characteristics, spacecraft initial mass, and central bodies associated with
the five orbit transfers studied in this paper.

Case Thrust (N) Specific Impulse (s) Initial Mass (kg) Central Body
A 1 3100 300 Earth
B 0.35 2000 2000 Earth
C 9.3 3100 300 Earth
D 0.045 3045 950 Vesta
E 2 2000 2000 Earth

RESULTS AND DISCUSSIONS

Case A

Figure 1 shows the Pareto fronts obtained with the three optimization experiments in
comparison with the trade-off curves obtained with the nominal Q-law with the absolute
effectivity and the relative effectivity control condition. When the nominal Q-law is used,
the absolute and relative effectivity cutoff values vary incrementally by 0.01 from 0 to
0.99. As previously reported, the nominal Q-law with the two control conditions lead to
qualitatively different trade-off curves. The relative condition leads to a smoothly
connected curve, while the absolute condition leads to a large gap in the middle of the
curve.  

Unlike the nominal Q-law case, the optimized Q-laws with the three experiments
lead to similar-quality smooth Pareto fronts. EXP-I and EXP-III generate a slightly better
Pareto front than EXP-II for a long-flight-time regime. On the contrary, EXP-I and EXP-
II perform slightly better than EXP-III for a short-flight-time regime. Overall, EXP-I
outperforms EXP-II and EXP-III for the whole flight time range. This result suggests that
the relative effectivity cutoff condition is a sensible choice for the long-flight-time regime
while the absolute cutoff condition is suitable for the short-flight-time regime.  However,
it is important to note that the performance difference among the three experiments is
within less than one percent in terms of propellant mass.

The temporal variation of the absolute effectivity gives insight into the roles of the
absolute and relative effectivity cutoff conditions. Figure 2(a) shows the temporal
variation when the nominal Q-law is used with zero absolute and relative effectivity
cutoffs (i.e. continuous thrusting). The absolute effectivity ranges between 0.95 and 1.0
for most of the flight time, implying the absolute effectivity cutoff parameter does not
play any role until it is close to values around 0.95. When the absolute effectivity cutoff
is larger than 0.95, the thrust condition becomes extremely sensitive to the change of the
absolute effectivity cutoff. This explains the poor performance of the absolute cutoff
condition when the nominal Q-law is used, as shown in Figure 1.
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This problem has been resolved by adjusting other Q-law parameters,5 which in turn
change the dynamics of the absolute effectivity to make the thrust condition less sensitive
to the cutoff value. Figure 2(b) clearly demonstrates the change of the temporal variation
when the other Q-law parameter are optimized. The temporal variation extends over a
wider range thereby decreasing the sensitivity of the control of the thrust condition to the
value of the absolute cutoff.

An alternative solution to the poor performance of the absolute cutoff condition is
provided by the relative cutoff condition.4  Since the relative effectivity always ranges
between 0 and 1, the sensitivity of the thrust condition to the relative cutoff value is less
dramatic.  A significant improvement of the Q-law performance with the relative cutoff
condition has been demonstrated with the nominal Q-law,4 where the resulting flight time
increases smoothly with the increase of the relative cutoff value instead of having a large
gap in the flight times as obtained with the absolute cutoff condition.3

When optimal Q-law parameters are used, the effect of changing the control condition
(relative or absolute effectivity) on the Q-law performance is not as dramatic as with the
nominal Q-law. Figure 1 shows that all thrust on/off conditions lead to a smooth and
widely spread Pareto front, and that the difference is within a few percents in the
propellant mass. The relative cutoff condition provides a slightly better performance for
the long flight times, thanks to its lesser sensitivity of the thrust condition to the cutoff
value.

The optimal effectivity cutoff values found with the three experiments are plotted in
Figure 3. In EXP-1, there is an order switch between the absolute and relative cutoff
values at around a flight time of about 45 days. Below 45 days, the absolute cutoff value
is higher than the relative one, and dominates the thrust condition. Conversely, the
relative cutoff value becomes higher after 45 days and controls the thrust condition. In
comparison with EXP-II and EXP-III, the optimal absolute values in EXP-I closely
follow those of EXP-II for the short flight times while the optimal relative cutoff values
of EXP-I follow those of EXP-III for the long flight times.  This result is consistent with
the performance comparison shown in Figure 1. For short flight times, the absolute
effectivity condition performs better and hence EXP-I chooses high absolute cutoff
values. In contrast, the relative condition is more efficient for the long flight time and
hence EXP-I chooses high relative cutoff values in this regime. In addition, EXP-I chooses
moderate absolute cutoff values to truncate the thrust arcs if the absolute effectivity is
too low even though the relative effectivity is high enough. This gives a slight advantage
to the EXP-I thrusting scheme over the EXP-III thrusting scheme at the long flight times.

Case B

Figure 4 shows the Pareto fronts obtained with the three optimization experiments in
comparison with the trade-off curves obtained with the nominal Q-law with the absolute
effectivity and the relative effectivity control condition. When the nominal Q-law is used,
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the absolute and relative effectivity cutoff values vary incrementally by 0.01 from 0 to
0.99. Figure 4 shows that there is no significant difference in the performances of EXP-I,
EXP-II, and EXP-III. Either the absolute effectivity or the relative effectivity provides a
sensible thrust on/off condition for this type of orbit transfers.

The temporal variation of the absolute effectivity of this orbit transfer sheds light on
the cause of the uniform performances among the three experiments. As shown in Figure
5, the variation of the absolute effectivity extends over a range of almost one in both the
nominal Q-law and the optimal Q-law. This wide range makes the absolute thrust on/off
condition less sensitive to the choice of the cutoff values.  The relative cutoff condition
does not have the sensitivity problem of the absolute cutoff condition because by
definition, the relative effectivity ranges between 0 and 1. However, the shortcoming of
the relative cutoff condition is that it becomes too loose when the absolute effectivity is
very low, and conversely it is too stringent when the absolute effectivity is very high. For
example, even a small value of the relative cutoff turns the thrust off even though the
absolute effectivity is over 0.7 at the flight time below 20 days in the optimal Q-law case
(see Fig. 5b). However, the shortcomings of the absolute and relative effectivity are
mitigated through the optimization process of the other Q-law parameters, which changes
the temporal variation of the thrust effectivity.  It is the interplay between the effectivity
cutoff value and the other Q-law parameters that leads to the more or less uniform
performance among the three experiments.

The optimal cutoff values found with the three experiments are plotted in Figure 6.
The results for EXP-I suggest that the absolute cutoff value dominates the thrust control
condition in EXP-I case since the absolute value is mostly higher than the relative value,
which fluctuates in a wide range. The absolute cutoff value profile for EXP-II closely
follows the relative cutoff value profile found in EXP-III.

Case C

Figure 7 shows the Pareto fronts obtained with the three optimization experiments in
comparison with the trade-off curves obtained with the nominal Q-law with the absolute
effectivity and the relative effectivity control condition. When the nominal Q-law is used,
the absolute and relative effectivity cutoff values vary incrementally by 0.01 from 0 to
0.99. There is no significant difference among the performances of EXP-I, EXP-II, and
EXP-III. Either the absolute effectivity or the relative effectivity provides a sensible
thrust on/off condition for this type of orbit transfers. Note that for this particular run,
EXP-III did not lead to a solution for the shortest flight times found by EXP-I and EXP-
II. However, another independent run of EXP-III produced the shortest flight time
solutions. We therefore suspect that the difference in the shortest flight time solutions is
within the statistical fluctuation of the stochastic genetic algorithm optimization process
rather than a consistent performance difference.  

The temporal variations of the absolute effectivity are plotted in Figure 8. A wide
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range of the effectivity is shown. The wide range makes the absolute cutoff condition less
sensitive to the cutoff value as in Case B. The optimal Q-law changes the range of the
absolute effectivity to be more evenly distributed along the flight time.  Figure 9 plots the
optimal cutoff values found with the three optimization experiments.

Case D

Figure 10 shows the Pareto fronts obtained with the three optimization experiments
in comparison with the trade-off curves obtained with the nominal Q-law with the
absolute effectivity and the relative effectivity control condition. When the nominal Q-
law is used, the absolute and relative effectivity cutoff values vary incrementally by 0.01
from 0 to 0.99. Among the three optimization experiments, EXP-II and EXP-III perform
slightly better than EXP-I for the long-flight-time regime.  This contrasts with the results
found for Case A, where EXP-I yields the betst performance. In principle, EXP-I is the
superset of EXP-II and EXP-III and should perform at least as well as they do. However,
the optimization process in EXP-I involves a larger search space and thus can be
misguided by local minima.  This difficulty can be overcome by choosing a larger
population size, which leads to another undesired consequence – an increase of the
computational time. If one is interested in the best performance for a given computational
time, either EXP-II or EXP-III is a better choice than EXP-I for this type of orbit
transfers. This result suggests that both the absolute and relative effectivity
measurements provide a suitable guidance on the thrust on/off condition for this orbit
transfer. The performance difference among the three experiments is within less than two
percents in terms of propellant mass.

Figure 11 shows the dynamics of the absolute effectivity for the nominal and the
optimal Q-law, which is the shortest flight-time solution from EXP-I. The results show
that different Q-law parameters can significantly alter the dynamics of the absolute
effectivity. Overall, the absolute effectivity is broadly distributed between 0 and 1 and
this makes the choice of the effectivity type less critical in this transfer.

Figure 12 shows the optimal cutoff values found with the three optimization
experiments. In EXP-1, there is a switch of the order of the absolute and relative cutoff
values at around a flight time of 75 days. Below 75 days, the absolute cutoff value is
higher than the relative one, and dominates the thrust condition. Conversely, the relative
cutoff value is higher after 75 days and controls the thrust condition. When only one
cutoff value is used as in EXP-II and EXP-III, there is a discontinuity in the optimal
values around at a flight time of 60 days. This indirectly shows that there is a qualitative
change in the optimal trajectories around that flight time.
  
Case E

Figure 13 shows the Pareto fronts obtained with the three optimization experiments
in comparison with the trade-off curves obtained with the nominal Q-law with the
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absolute effectivity and the relative effectivity control condition. When the nominal Q-
law is used, the absolute and relative effectivity cutoff values vary incrementally by 0.01
from 0 to 0.99. EXP-II outperforms EXP-III for a long-flight-time regime, and that the
performance of EXP-I lies between the performances of EXP-II and EXP-III. The
absolute effectivity provides a slightly more efficient criterion for the thrust on/off
condition than the relative one for this type of orbit transfer. The difference in terms of
the resulting propellant mass among the three experiments is smaller than one percent.
Figure 14 shows a wide variation of the absolute effectivity for all times for both the
nominal Q-law and an optimal Q-law (the shortest flight-time solution from EXP-I). The
optimal cutoff values found with the optimization processes are plotted in Figure 15.     

Table 4. Summary of the optimization experiment results.
Case Best experiment Best effectivity for thrust/coast condition

A I Absolute and Relative

B Any Any

C Any Any

D II or III Absolute only or Relative only

E II Absolute only

Table 4 summarizes the results of the optimization experiments for the five orbit
transfer problems. None of the five orbit transfer problems shows a significant
performance difference among the three experiments. A slight difference is shown in Case
A, D, and E, but the performance difference is smaller than a few percents in terms of the
propellant mass. In general, the relative effectivity becomes important when the orbit
transfer involves a narrow range of variation for the absolute effectivity for most of the
flight times as shown in Case A. In other transfers whose absolute effectivity varies in a
wide range between 0 and 1, the absolute effectivity cutoff condition is as efficient as or
even better than the relative effectivity.

CONCLUSIONS
We have investigated the role of the thrust control condition given by the absolute

and/or the relative effectivity in the Q-law performance when the Q-law control
parameters are optimized with a multi-objective genetic algorithm. Five types of orbit
transfer problems are studied. For the Q-law performance comparison, we have
conducted three optimization experiments: 1) the thrust control condition is given by
both the absolute and relative effectivity, 2) the thrust control condition is given by only
the absolute effectivity, and 3) the thrust control condition is given by only the relative
effectivity. No significant performance difference among the three experiments is found in
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any of the five orbit transfers studied. A slight difference is shown in some of the
transfers, but the performance difference is smaller than a few percents of the propellant
mass. In general, the absolute effectivity is inefficient when the orbit transfer involves a
narrow range of variation for the absolute effectivity for most of the flight times.
Conversely, when the absolute effectivity varies in a wide range between 0 and 1, the
relative effectivity is less efficient than the absolute effectivity. However, the
shortcomings of the absolute and relative effectivity are mitigated through the
optimization process of the other Q-law parameters, which changes the dynamics of the
thrust effectivity. It is the interplay between the effectivity dynamics and the other Q-
law parameters that leads to the more or less uniform performance for the three
experiments.
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Figure 1. Pareto fronts for Case A, obtained the three optimization experiments in
comparison with the nominal Q-law with the absolute and relative effectivity.

Figure 2. Dynamics of the thrust absolute effectivity for Case A (a) with the nominal Q-law
using ηabs

cut  =0 and ηrel
cut =0,  (b) with an optimal Q-law for the shortest flight time.

Figure 3. Optimal effectivity cutoff values found for Case A.
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Figure 6. Optimal effectivity cutoff values found for Case B.

Figure 5. Dynamics of the thrust absolute effectivity for Case B (a) with the nominal Q-law
using ηabs

cut  =0 and ηrel
cut =0,  (b) with an optimal Q-law for the shortest flight time.

Figure 4. Pareto fronts for Case B, obtained the three optimization experiments in
comparison with the nominal Q-law with the absolute and relative effectivity.
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Figure 9. Optimal effectivity cutoff values found for Case C.

Figure 8. Dynamics of the thrust absolute effectivity for Case C (a) with the nominal Q-law
using ηabs

cut  =0 and ηrel
cut =0,  (b) with an optimal Q-law for the shortest flight time.

Figure 7. Pareto fronts for Case C, obtained the three optimization experiments in
comparison with the nominal Q-law with the absolute and relative effectivity.
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Figure 11. Dynamics of the thrust absolute effectivity for Case D (a) with the nominal Q-
law using ηabs

cut  =0 and ηrel
cut =0,  (b) with an optimal Q-law for the shortest flight time.

Figure 12. Optimal effectivity cutoff values found for Case D.

Figure 10. Pareto fronts for Case D, obtained the three optimization experiments in
comparison with the nominal Q-law with the absolute and relative effectivity.
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Figure 15. Optimal effectivity cutoff values found for Case E.

Figure 14. Dynamics of the thrust absolute effectivity for Case E (a) with the nominal Q-
law using ηabs

cut  =0 and ηrel
cut =0,  (b) with an optimal Q-law for the shortest flight time.

Figure 13. Pareto fronts for Case E, obtained the three optimization experiments in
comparison with the nominal Q-law with the absolute and relative effectivity.
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